

DAKOTA 101: Optimization

http://dakota.sandia.gov

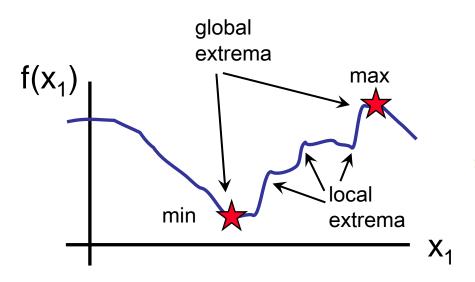
Learning Goals - Optimization

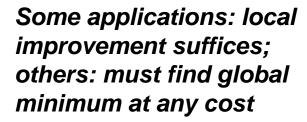
- Define goals of optimization and problem components
- Identify information needed by DAKOTA
- Become familiar with basic solution approaches
- Define optimization problems associated with your field
- Formulate and set up an optimization problem associated with the cantilever beam example
- Find and interpret optimization study results
- Survey problem categories and considerations for method selection

Why Use Optimization?

- What: Determine parameter values that yield extreme values of objectives, while satisfying constraints.
- Why?
 - Identify system designs with maximal performance
 - E.g., case geometry that minimizes drag and weight, yet is sufficiently strong and safe
 - Determine operational settings that maximize system performance
 - E.g., fuel re-loading pattern yielding the smoothest nuclear reactor power distribution while maximizing output
 - Identify minimum-cost system designs/operational settings
 - E.g., delivery network that minimizes cost while also minimizing environmental impact
 - Identify best/worst case scenarios
 - E.g., impact conditions that incur the most damage

Optimization Goals Come in Multiple Forms





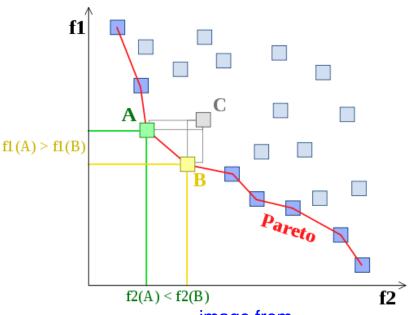
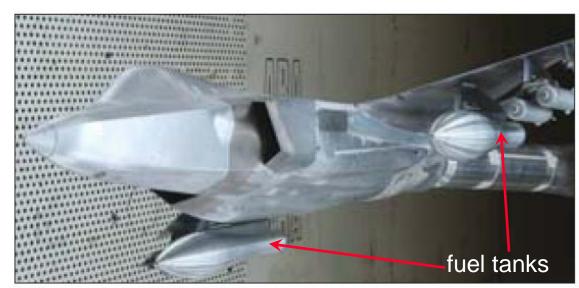


image from http://en.wikipedia.org/wiki/Pareto_efficiency

May want tradeoffs between multiple objectives

Optimization for Lockheed-Martin F-35 External Fuel Tank Design



This wind tunnel model of F-35 features an optimized external fuel tank.

Optimization Problem

- Goal: Minimize DRAG and YAW over opening possible values of shape parameters
- Shape parameters must be bounded to fit within prescribed area
- Design must be sufficiently safe and strong

F-35: stealth and supersonic cruise

- ~ \$20 billion cost
- ~ 2600 aircraft (USN, USAF, USMC, UK & other foreign buyers)

LM CFD code

- Expensive: 8 hrs/job on 16 processors
- Fluid flow around tank highly sensitive to shape changes

Objective Function: quantity for which we are trying to find the extreme value over parameter ranges

Parameters: quantities to be varied Constraints: conditions that cannot be violated

Brief Group Discussion: Optimization Practice

5-10 min discussion

- What types of system design, performance, and cost questions do you ask in your domain?
- What metrics do you use to assess design quality, performance level, and costs?
- How do you answer your questions currently?
- What are the key challenges you face?
- Can any of your questions be framed (or reframed) as finding extremes?

Anatomy of an Optimization Problem: Mapping to DAKOTA Interface

Computed by simulation and reported to DAKOTA

Minimize:

$$f(x_1,...,x_N)$$
 Objective function(s)

Subject to:
$$g_{LB} \le g(x) \le g_{UB}$$
 Nonlinear inequality constraints $h(x) = h_E$ Nonlinear equality constraints

$$A_{l}x \le b_{l}$$
 Linear inequality constraints
 $A_{E}x = b_{E}$ Linear equality constraints

$$x_{LB} \le x \le x_{UB}$$
 Bound constraints

Specified in DAKOTA input file

Anatomy of an Optimization Problem: Mapping to DAKOTA Interface

Need info in "interface" and "responses" blocks

Minimize:

$$f(x_1,...,x_N)$$

Objective function(s)

Subject to:
$$g_{LB} \le g(x) \le g_{UB}$$

Nonlinear inequality constraints

 $h(x) = h_F$

Nonlinear equality constraints

Need info in "method" block

$$A_1 x \leq b_1$$

 $A_{F}x = b_{F}$

Linear inequality constraints Linear equality constraints

 $X_{LB} \le X \le X_{UB}$

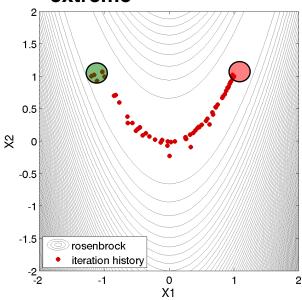
Bound constraints

Need info in "variables" block

Basic Classes of Optimization Approaches (the "method" block)

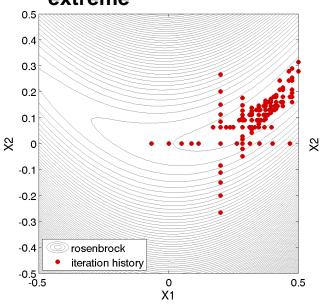
Gradient Descent

- Looks for improvement based on derivative
- Requires analytic or numerical derivatives
- Efficient/scalable for smooth problems
- Converges to local extreme



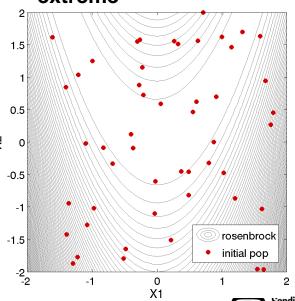
Derivative-Free Local

- Sampling with bias/rules toward improvement
- Requires only function values
- Good for noisy, unreliable or expensive derivatives
- Converges to local extreme

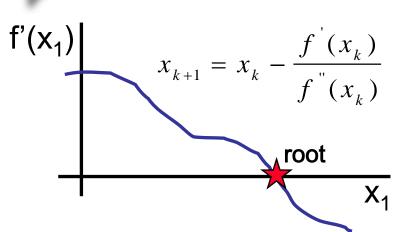


Derivative-Free Global

- Broad exploration with selective exploitation
- Requires only function values
- Typically computationally intensive
- Converges to global extreme



Variations on Gradient-Based Optimizers



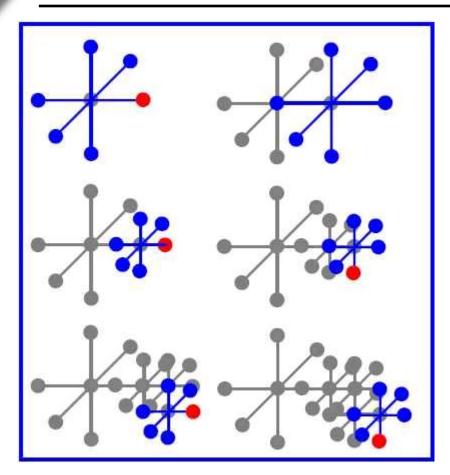
Forward difference

$$\frac{\partial f}{\partial x} \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Go downhill

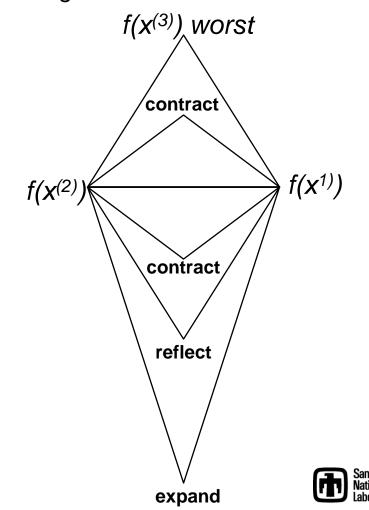
- e.g., steepest descent, conjugate gradient,
 Newton and variants
- second derivatives differentiate minima from maxima, inflection points; Hessian approximations often used in practice (quasi-Newton)
- Require reliable derivatives of objectives and nonlinear constraints w.r.t. decision variables:
 - analytic evaluation: code them into the simulation
 - finite differences: no code modification and provided by most optimizers
 - automatic differentiation: source transformation, operator overloading
- Strategies for managing convergence:
 - line search: find a step in the Newton direction to ensure sufficient decrease
 - trust region: use quadratic model in an expanding/contracting trust region
- Handling nonlinear constraints
 - reduced gradient
 - sequential linear or quadratic programming (SLP/SQP)
 - augmented Lagrangian or exact penalty methods
 - interior point / barrier, filter methods

Variations on Derivative-Free Optimizers

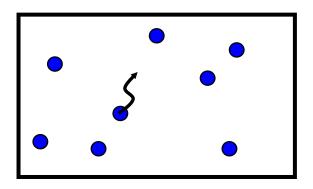


Pattern Search methods search using a stencil, often that defines some basis, that is iteratively re-centered and resized.

Nelder Mead searches using a simplex that is iteratively reflected through a centroid and resized.

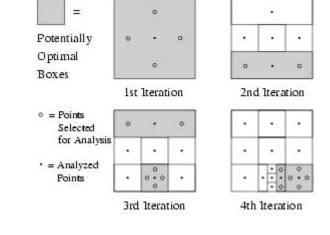


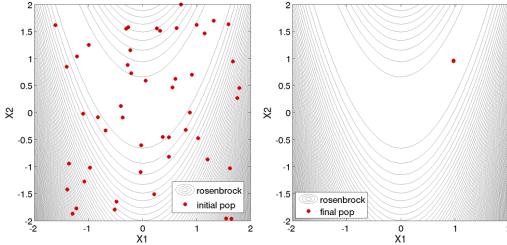
Variations on Global Optimizers



Division of RECTangles (DiRECT) iteratively subdivides the search domain based on size and rank of each existing subdivision.

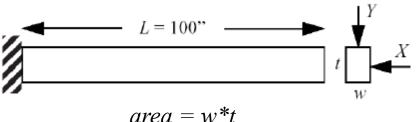
Multi-Start Local Optimization involves initiating a local optimization method at multiple points, with the goal of identifying multiple local minimizers from which the lowest can be chosen.





Evolutionary/Genetic Algorithms evolve an initial random sample over generations, according a "fitness" function, until the minimum is found.

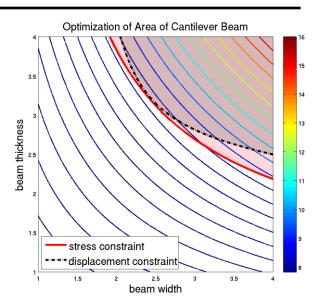
Example Problem: Cantilever Beam



$$area = w \cdot i$$

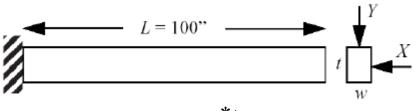
stress =
$$\frac{600}{wt^2}Y + \frac{600}{w^2t}X - R \le 0$$

displaceme
$$nt = \frac{4L^3}{Ewt} \sqrt{\left(\frac{Y}{t^2}\right)^2 + \left(\frac{X}{w^2}\right)^2} - D_0 \le 0$$



- What are some optimal design objectives that may be of interest?
- What are some design constraints that may come into play?
- What might you expect the results of optimizing a design to be?

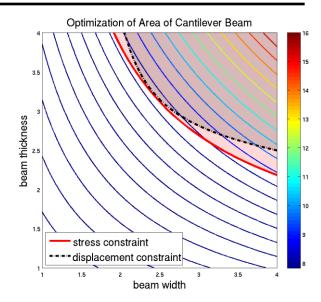
Example Problem: Cantilever Beam



$$area = w *t$$

stress =
$$\frac{600}{wt^2}Y + \frac{600}{w^2t}X - R \le 0$$

displaceme
$$nt = \frac{4L^3}{Ewt} \sqrt{\left(\frac{Y}{t^2}\right)^2 + \left(\frac{X}{w^2}\right)^2} - D_0 \le 0$$



- Create DAKOTA study to minimize area subject to constraints
 1.0 ≤ beam_width ≤ 4.0, 1.0 ≤ beam_thickness ≤ 4.0,
 stress ≤ 0, displacement ≤ 0
- Use nominal (state variables): R=40000, E=2.9e7, X=500, Y=1000
- Use CONMIN MFD method (could modify or borrow from template Optimization Local Constrained GradientBased)
- Responses: 1 objective (area), 2 nonlinear inequality constraints
- Try analytic vs. numerical gradients
- Compare to Asynchronous Pattern Search, Coliny EA

Potential Solution: Cantilever Beam Optimization


```
# extraexamples/cantilever optimization.in
# Perform deterministic optimization with uncertainties at nominal
method
  conmin_mfd
variables
  continuous design = 2
    upper bounds
                   4.0
                                          4.0
    initial point 2.5
                                          2.5
    lower bounds
                   1.0
                                          1.0
    descriptors
                    'beam width'
                                          'beam thickness'
 # Fix at nominal
  continuous_state = 4
    initial state
                   40000
                               2.9e7
                                          500
                                                     1000
                                          'X'
                                                     'Y'
    descriptors
                    'R'
                               'F'
interface
 direct
    analysis_driver = 'mod_cantilever'
responses
  num objective functions = 1
 num_nonlinear_inequality_constraints = 2
    descriptors = 'area' 'stress' 'displacement'
  analytic gradients
  no hessians
```


Results: Cantilever Beam Optimization


```
Optimization of Area of Cantilever Beam
DAKOTA Standard Output:
<<<< Function evaluation summary: 93 total (88 new, 5 duplical
<<<< Best parameters
                        2.3518478279e+00 w
                        3.3248865336e+00 t
                                                                      beam thickness
                        4.0000000000e+04 R
                        2.9000000000e+07 E
                        5.0000000000e+02 X
                        1.0000000000e+03 Y
<<<< Best objective function =
                        7.8196271720e+00
<<<< Best constraint values
                       -1.5245380116e-02
                                                                               stress constraint
                        9.9610350990e-04
                                                                              displacement constraint
DAKOTA Tabular Output:
                                                                                        beam width
```

%eva	l_id	W	t	obj_fn	nln_ineq_con_1	nln_ineq_con_2
	1	4	4	16	-0.6484375	-0.7326873741
	2	3.8	3.8	14.44	-0.5899548039	-0.6718102213
	3	3	3	9	-0.1666666667	-0.1551600958
	4	2.840596397	2.840596397	8.068987889	-0.01835621192	0.05104499937
	5	2.699999996	2.699999996	7.289999976	0.1431184327	0.2876694251
•••••	••••••					
	51	2.354544492	3.321059316	7.819581921	-0.01504188748	0.001014534674
	52	2.355218658	3.320102512	7.819567383	-0.01499020104	0.001021619777
	53	2.351847828	3.324886534	7.819627172	-0.01524538012	0.0009961035099
	54	2.36533115	3.305750446	7.819194503	-0.0141758241	0.001246825701
16	55	2.363645734	3.308142458	7.819276808	-0.01431664619	0.001193803584

Brief Group Discussion: Cantilever Problem and Solution

5-10 min discussion

- Are the results what you expected? Why or why not?
- What do you see as the limitations of the method used?
- What alternative methods might you try?

Optional Examples: Advanced Optimization Problems and Methods

- Constrained
 - Exercise: Minimize an objective given constraints
- Multi-start local
 - Exercise: Provide multiple starting points to a local optimizer to find multiple local minima
- Global
 - Exercise: Find the global extreme value
- Multi-objective
 - Exercise: Optimize across multiple competing objectives
- Surrogate-based/multifidelity
 - Exercise: Reduce the computational cost (i.e., number of function evaluations) of optimization
- Hybrid
 - Exercise: Use multiple optimization methods to solve a single problem

Quick Guide for Optimization Method Selection

					_
Category	DAKOTA method names	Continuous Variables	Categorical/ Discrete Variables	Bound Constraints	General Constraints
	optpp_cg	х			
Gradient-Based	dot_bfgs, dot_frcg, conmin_frcg	x		x	
Local (Smooth Response)	<pre>npsol_sqp, nlpql_sqp, dot_mmfd, dot_slp, dot_sqp, conmin_mfd, optpp_newton, optpp_q_newton, optpp_fd_newton, weighted sums (multiobjective), pareto_set strategy (multiobjective)</pre>	x		x	x
Gradient-Based Global (Smooth Response)	hybrid strategy, multi_start strategy	x		x	x
Derivative-Free	optpp_pds	x		X	
Local (Nonsmooth Response)	<pre>asynch_pattern_search, coliny_cobyla, coliny_pattern_search, coliny_solis_wets, surrogate_based_local</pre>	x		x	x
Derivative-Free	ncsu_direct	x		x	
Global (Nonsmooth Response)	<pre>coliny_direct, efficient_global, surrogate_based_global</pre>	x		X	x
Nesponse)	coliny_ea, soga, moga (multiobjective)	X	x	X	X
See Usage Guidelines in DAKOTA User's Manual					

Optimization References

- J. Nocedal and S. J. Wright, "Numerical Optimization", Second Edition, Springer Science and Business Media, LLC, New York, New York, 2006.
- S. S. Rao, "Engineering Optimization: Theory and Practice", Fourth Edition, John Wiley and Sons, Inc., Hoboken, New Jersey, 2009.
- DAKOTA User's Manual
 - Optimization Capabilities
 - Surrogate-Based Minimization
 - Advanced Strategies
 - Advanced Model Recursions: Optimization Under Uncertainty
- DAKOTA Reference Manual

Learning Goals Revisited: Did we meet them?

- Define goals of optimization and problem components
- Identify information needed by DAKOTA
- Become familiar with basic solution approaches
- Define optimization problems associated with your field
- Formulate and set up an optimization problem associated with the cantilever beam example
- Find and interpret optimization study results
- Survey problem categories and considerations for method selection

